Dr. Michael Wand

Geometric Modeling

Assignment sheet 1 (Math recap, due April 29th 2008 before the lecture)

- (1) Gram-Schmidt Orthogonalization [4 points]
 - a. Calculate an orthogonal basis for \mathbb{R}^3 from the vectors

$$v_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, v_2 = \begin{pmatrix} 0 \\ 2 \\ 0 \end{pmatrix}, v_3 = \begin{pmatrix} 1 \\ 0 \\ 3 \end{pmatrix}$$

using Gram-Schmidt Orthogonalization.

- b. Calculate an orthogonal basis for the functional basis $[1, x, x^2]$ on the interval [0, 1] using Gram-Schmidt Orthogonalization. (Remember to use the inner product for function spaces)
- c. Sketch the resulting functions from b.
- (2) Eigenvectors and –values in \mathbb{R}^3 [8 points]
 - a. Show that u is an eigenvector of the matrix uu^t and has an eigenvalue of $||u||^2$.
 - b. Show that uu^t has only one non-zero eigenvalue.
 - c. Given a vector v with $||v||^2 = 1$ show that $I vv^t$ has two non-zero eigenvalues with value 1. (Hint: What are eigenvectors of I?)
 - d. Given eigenvectors $e_1, e_2, e_3 \in \mathbb{R}^3$ with corresponding eigenvalues d_1, d_2, d_3 , how do you reconstruct the source matrix M from which they were calculated?
- (3) Integral transformation [4 points]

Show that the surface area A of a sphere given by $f(x,y) = \pm \sqrt{r^2 - x^2 - y^2}$ is given by the formula $A = 4\pi r^2$. (Hint: Transform the integral to polar coordinates)

- (4) Curvature [4 points]
 - a. Derive the curvature function $\kappa(t)$ for the following functions:

$$f_1(t) = \begin{pmatrix} r\cos(t) \\ r\sin(t) \end{pmatrix}$$
 $f_2(t) = \begin{pmatrix} t \\ t^2 \end{pmatrix}$

b. Given the surface f(x,y) = 3 + xy, what is the curvature $\kappa(\alpha)$ at point $\binom{0}{0}$ in direction α (use polar coordinates)? In which direction is it minimal / maximal?